Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
J Infect Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716969

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for SARS-CoV-2 infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS: Participants were non-hospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS: Study participants receiving single- and dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared to single-active mAb, treatment with dual-active mAbs led to faster viral load decline at study day 3 (p < 0.001) and day 7 (p < 0.01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than placebo (2.6% vs 0%, P < 0.001), and more frequently detected in the setting of single-active compared to dual-active mAb treatment (7.2% vs 1.1%, p < 0.01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSION: Compared to single-active mAb therapy, dual-active mAbs led to similar clinical outcomes, but significantly faster viral load decline and a lower risk of emergent resistance.

2.
Int J Soc Determinants Health Health Serv ; : 27551938241247778, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646691

ABSTRACT

Regulatory agencies must balance patient demands to access new treatments for fatal diseases with limited treatment options while ensuring drug safety and efficacy. However, questionable U.S. regulatory actions resulted in the early approval of AMX0035 to treat amyotrophic lateral sclerosis (ALS) by reconvening advisory commissions to obtain positive decisions and designating the drug as a new molecular entity. Data from one randomized clinical trial suggests minimal delays in disease progression and longer survivability, but debate remains about the lack of confirmatory evidence of effectiveness owing to study limitations. A patient's decision-making process details the experience of using the drug, including perspectives on access, cost, effectiveness, and adverse effects. In line with the "nichebuster" business model, the drugmaker, Amylyx Pharmaceuticals, is charging US$158,000/year/patient and thus forecast to turn a profit on a drug with debatable clinical effectiveness prior to completing a Phase 3 trial. Early marketing approval, despite community demands, is unnecessary and may have reduced access because of the end of a compassionate use program, and the high price tag results in restricted coverage and high out-of-pocket costs. Also, the drug's key ingredients are available as a generic and a supplement.

3.
Biotechnol Prog ; : e3469, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613439

ABSTRACT

Reliable monitoring of mammalian cells in bioreactors is essential to biopharmaceutical production. Trypan blue exclusion is a method of determining cell density and viability that has been used for over one hundred years to monitor cells in culture and is the current standard method in biomanufacturing. This method has many disadvantages however and there is a growing demand for more detailed and in-line measurements of cell growth in bioreactors. This article assesses a novel dynamic imaging system for single cell analysis. This data shows that comparable total cell density, viable cell density and percentage viability data shown here, generated by the imaging system, aligned well with conventional trypan blue counting methods for an industrially relevant Chinese Hamster Ovary (CHO) cell line. Furthermore, detailed statistical analysis shows that the classification system used by the PharmaFlow system can reveal trends of interest in monitoring the health of mammalian cells over a 6-day bioreactor culture. The system is also capable of sampling at-line, removing the necessity for taking samples off-line and enabling real time monitoring of cells in a bioreactor culture.

4.
Biotechnol Prog ; : e3450, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38476025

ABSTRACT

Foam is generated in mammalian cell cultures by excessive agitation or gas sparging. This occurs particularly in cultures that generate recombinant proteins at high cell concentrations. Three antifoam agents were tested for their compatibility with antibody-producing Chinese hamster ovary (CHO) cells. One agent (antifoam 204) was completely inhibitory to growth at a concentration of 10 ppm, one agent (antifoam C) showed partial inhibition and a third (antifoam SE-15) showed no inhibition at this concentration. A novel foam image analyzer (LabCam) was used to evaluate two antifoams (C and SE-15) for their ability to dissipate foam generated in cell culture media by enhanced agitation. The presence of antifoam in the media reduced significantly the foam layer that was generated and this was shown to be rapidly dissipated in the presence of 10 ppm SE-15. The antifoams were also tested for foam dissipation in cultures of CHO cells at >106 cells/mL. Supplementation of the cultures with SE-15 resulted in dissipation of foam generated by excessive gas sparging within 2 min. Under equivalent conditions 75% of foam dissipated in the presence of antifoam C, within 2 min but there was a residual foam layer up to 25 min. This study showed the value of an optical monitoring system (LabCam) for measuring foam generation and dissipation in a bioreactor to assess the efficiency of antifoam agents to reduce foam in a bioreactor. This has the potential for use as a control system that could be designed for continuous monitoring and foam control in a mammalian cell bioprocess.

5.
ACS EST Air ; 1(3): 200-222, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38482269

ABSTRACT

The Alaskan Layered Pollution And Chemical Analysis (ALPACA) field experiment was a collaborative study designed to improve understanding of pollution sources and chemical processes during winter (cold climate and low-photochemical activity), to investigate indoor pollution, and to study dispersion of pollution as affected by frequent temperature inversions. A number of the research goals were motivated by questions raised by residents of Fairbanks, Alaska, where the study was held. This paper describes the measurement strategies and the conditions encountered during the January and February 2022 field experiment, and reports early examples of how the measurements addressed research goals, particularly those of interest to the residents. Outdoor air measurements showed high concentrations of particulate matter and pollutant gases including volatile organic carbon species. During pollution events, low winds and extremely stable atmospheric conditions trapped pollution below 73 m, an extremely shallow vertical scale. Tethered-balloon-based measurements intercepted plumes aloft, which were associated with power plant point sources through transport modeling. Because cold climate residents spend much of their time indoors, the study included an indoor air quality component, where measurements were made inside and outside a house to study infiltration and indoor sources. In the absence of indoor activities such as cooking and/or heating with a pellet stove, indoor particulate matter concentrations were lower than outdoors; however, cooking and pellet stove burns often caused higher indoor particulate matter concentrations than outdoors. The mass-normalized particulate matter oxidative potential, a health-relevant property measured here by the reactivity with dithiothreiol, of indoor particles varied by source, with cooking particles having less oxidative potential per mass than pellet stove particles.

6.
Sci Transl Med ; 16(731): eadk1599, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38266109

ABSTRACT

Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the immune defects that predispose an individual to persistent coronavirus disease 2019 (COVID-19) remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median times to nasal viral RNA and culture clearance in individuals with severe immunosuppression due to hematologic malignancy or transplant (S-HT) were 72 and 40 days, respectively, both of which were significantly longer than clearance rates in individuals with severe immunosuppression due to autoimmunity or B cell deficiency (S-A), individuals with nonsevere immunodeficiency, and nonimmunocompromised groups (P < 0.01). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing resistance against therapeutic monoclonal antibodies. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral responses, whereas only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across distinct immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Prospective Studies , Kinetics , Immunosuppression Therapy
7.
Sci Total Environ ; 914: 169693, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38160845

ABSTRACT

San Antonio has been designated as ozone nonattainment under the current National Ambient Air Quality Standards (NAAQS). Ozone events in the city typically occur in two peaks, characterized by a pronounced spring peak followed by a late summer peak. Despite higher ozone levels, the spring peak has received less attention than the summer peak. To address this research gap, we used the Weather Research and Forecasting (WRF)-driven GEOS-Chem (WRF-GC) model to simulate San Antonio's ozone changes in the spring month of May from 2017 to 2021 and quantified the respective contributions from changes in anthropogenic emissions and meteorology. In addition to modeling, observations from the San Antonio Field Studies (SAFS), the Texas Commission on Environmental Quality (TCEQ) Continuous Ambient Monitoring Stations (CAMS), and the spaceborne TROPOspheric Monitoring Instrument (TROPOMI) are used to examine and validate changes in ozone and precursors. Results show that the simulated daytime mean surface ozone in May 2021 is 3.8 ± 0.6 ppbv lower than in May 2017, which is slightly less than the observed average differences of -5.3 ppbv at CAMS sites. The model predicted that the anthropogenic emission-induced changes contribute to a 1.4 ± 0.5 ppbv reduction in daytime ozone levels, while the meteorology-induced changes account for a 2.4 ± 0.6 ppbv reduction over 2017-2021. This suggests that meteorology plays a relatively more important role than anthropogenic emissions in explaining the spring ozone differences between the two years. We additionally identified (1) reduced NO2 and HCHO concentrations as chemical reasons, and (2) lower temperature, higher humidity, increased wind speed, and a stronger Bermuda High as meteorological reasons for lower ozone levels in 2021 compared to 2017. The quantification of the different roles of meteorology and ozone precursor concentrations helps understand the cause and variation of ozone changes in San Antonio over recent years.

8.
Biol Methods Protoc ; 8(1): bpad033, 2023.
Article in English | MEDLINE | ID: mdl-38107402

ABSTRACT

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) reawakened the need to rapidly understand the molecular etiologies, pandemic potential, and prospective treatments of infectious agents. The lack of existing data on SARS-CoV-2 hampered early attempts to treat severe forms of coronavirus disease-2019 (COVID-19) during the pandemic. This study coupled existing transcriptomic data from severe acute respiratory syndrome-related coronavirus 1 (SARS-CoV-1) lung infection animal studies with crowdsourcing statistical approaches to derive temporal meta-signatures of host responses during early viral accumulation and subsequent clearance stages. Unsupervised and supervised machine learning approaches identified top dysregulated genes and potential biomarkers (e.g. CXCL10, BEX2, and ADM). Temporal meta-signatures revealed distinct gene expression programs with biological implications to a series of host responses underlying sustained Cxcl10 expression and Stat signaling. Cell cycle switched from G1/G0 phase genes, early in infection, to a G2/M gene signature during late infection that correlated with the enrichment of DNA damage response and repair genes. The SARS-CoV-1 meta-signatures were shown to closely emulate human SARS-CoV-2 host responses from emerging RNAseq, single cell, and proteomics data with early monocyte-macrophage activation followed by lymphocyte proliferation. The circulatory hormone adrenomedullin was observed as maximally elevated in elderly patients who died from COVID-19. Stage-specific correlations to compounds with potential to treat COVID-19 and future coronavirus infections were in part validated by a subset of twenty-four that are in clinical trials to treat COVID-19. This study represents a roadmap to leverage existing data in the public domain to derive novel molecular and biological insights and potential treatments to emerging human pathogens.

9.
Science ; 382(6668): eadg2551, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37856589

ABSTRACT

The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate.

10.
Proc Natl Acad Sci U S A ; 120(46): e2219547120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37903246

ABSTRACT

The Hunga Tonga-Hunga Ha'apai (HT-HH) volcanic eruptions on January 13 and 15, 2022, produced a plume with the highest signal in stratospheric aerosol optical depth observed since the eruption of Mt. Pinatubo in 1991. Suites of balloon-borne instruments on a series of launches from Réunion Island intercepted the HT-HH plume between 7 and 10 d of the eruptions, yielding observations of the aerosol number and size distribution and sulfur dioxide (SO2) and water vapor (H2O) concentrations. The measurements reveal an unexpected abundance of large particles in the plume, constrain the total sulfur injected to approximately 0.2 Tg, provide information on the altitude of the injection, and indicate that the formation of sulfuric acid aerosol was complete within 3 wk. Large H2O enhancements contributed as much as ~30% to ambient aerosol surface area and likely accelerated SO2 oxidation and aerosol formation rates in the plume to approximately three times faster than under normal stratospheric conditions.

11.
medRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37577493

ABSTRACT

Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged SARS-CoV-2 infection, but the immune defects that predispose to persistent COVID-19 remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median time to nasal viral RNA and culture clearance in the severe hematologic malignancy/transplant group (S-HT) were 72 and 40 days, respectively, which were significantly longer than clearance rates in the severe autoimmune/B-cell deficient (S-A), non-severe, and non-immunocompromised groups (P<0.001). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing antiviral treatment resistance. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral, while only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.

12.
J Infect Dis ; 228(Suppl 2): S136-S143, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37650233

ABSTRACT

Understanding variant-specific differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral kinetics may explain differences in transmission efficiency and provide insights on pathogenesis and prevention. We evaluated SARS-CoV-2 kinetics from nasal swabs across multiple variants (Alpha, Delta, Epsilon, Gamma) in placebo recipients of the ACTIV-2/A5401 trial. Delta variant infection led to the highest maximum viral load and shortest time from symptom onset to viral load peak. There were no significant differences in time to viral clearance across the variants. Viral decline was biphasic with first- and second-phase decays having half-lives of 11 hours and 2.5 days, respectively, with differences among variants, especially in the second phase. These results suggest that while variant-specific differences in viral kinetics exist, post-peak viral load all variants appeared to be efficiently cleared by the host. Clinical Trials Registration. NCT04518410.


Subject(s)
COVID-19 , Humans , Half-Life , Kinetics , SARS-CoV-2
13.
Sci Total Environ ; 900: 165881, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37517736

ABSTRACT

This study investigated transport pathways and photochemical formation responsible for ozone exceedances during the September 2021 deployment of the Tracking Aerosol Convection Interactions ExpeRiment/Air Quality (TRACER-AQ) campaign in Houston, Texas. We focused on two ozone episodes, September 6th-September 11th ("Episode 1") and September 23rd-September 26th ("Episode 2"), when the maximum daily eight-hour average (MDA8) ozone at surface monitors exceeded 70 ppbv. Long-range transport patterns of air masses during these episodes were from the central/northern US. High-resolution (4 km resolution) trajectory analysis with FLEXible PARTicle (FLEXPART) dispersion model revealed local recirculation of air masses and the accumulation of pollutants across Houston contribute to the ozone exceedances. Comprehensive Air Quality Model with extensions (CAMx) driven by 1.33-km resolution meteorology from the Weather Research and Forecast (WRF) tool simulated elevated ozone production rates during ozone episodes across the Houston metropolitan area, with ozone production hotspots mostly over Houston city and industrial districts of the Houston Ship Channel (HSC). The regional increase in ozone production rates was due to the transport of VOC-rich air masses (via northerly flows) that brought ozone precursors to the region, which ultimately caused a transition in the ozone formation tendency from generally VOC-limited to NOx-limited conditions. However, the city of Houston and the HSC remained in a VOC-limited regime because of local NOx emissions that, to some extent, preponderated the impact of transported VOCs. While approximately 37 % of the elevated ozone production was attributed to local photochemistry, the remaining ∼63 % increase in ozone production was due to the transported ozone to the region during episodes, bringing ozone to the Houston region and contributing to ozone exceedances. The outcomes of this study illustrated the synergy between transport and ozone production, both long-range and local scale, which resulted in ozone exceedances in Houston.

14.
15.
Neurobiol Dis ; 182: 106147, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37178811

ABSTRACT

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , COVID-19/complications , SARS-CoV-2 , Nervous System Diseases/etiology , Central Nervous System , Brain
16.
Chem Sci ; 14(13): 3514-3522, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37006675

ABSTRACT

Heparan sulfate (HS) glycosaminoglycans are widely expressed on the mammalian cell surfaces and extracellular matrices and play important roles in a variety of cell functions. Studies on the structure-activity relationships of HS have long been hampered by the challenges in obtaining chemically defined HS structures with unique sulfation patterns. Here, we report a new approach to HS glycomimetics based on iterative assembly of clickable disaccharide building blocks that mimic the disaccharide repeating units of native HS. Variably sulfated clickable disaccharides were facilely assembled into a library of mass spec-sequenceable HS-mimetic oligomers with defined sulfation patterns by solution-phase iterative syntheses. Microarray and surface plasmon resonance (SPR) binding assays corroborated molecular dynamics (MD) simulations and confirmed that these HS-mimetic oligomers bind protein fibroblast growth factor 2 (FGF2) in a sulfation-dependent manner consistent with that of the native HS. This work established a general approach to HS glycomimetics that can potentially serve as alternatives to native HS in both fundamental research and disease models.

17.
Environ Sci Technol ; 57(13): 5149-5159, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36939598

ABSTRACT

We measured submicron aerosols (PM1) at a beachfront site in Texas in Spring 2021 to characterize the "background" aerosol chemical composition advecting into Texas and the factors controlling this composition. Observations show that marine "background" aerosols from the Gulf of Mexico were highly processed and acidic; sulfate was the most abundant component (on average 57% of total PM1 mass), followed by organic material (26%). These chemical characteristics are similar to those observed at other marine locations globally. However, Gulf "background" aerosols were much more polluted; the average non-refractory (NR-) PM1 mass concentration was 3-70 times higher than that observed in other clean marine atmospheres. Anthropogenic shipping emissions over the Gulf of Mexico explain 78.3% of the total measured "background" sulfate in the Gulf air. We frequently observed haze pollution in the air mass from the Gulf, with significantly elevated concentrations of sulfate, organosulfates, and secondary organic aerosol associated with sulfuric acid. Analysis suggests that aqueous oxidation of shipping emissions over the Gulf of Mexico by peroxides in the particles might potentially be an important pathway for the rapid production of acidic sulfate and organosulfates during the haze episodes under acidic conditions.


Subject(s)
Air Pollutants , Sulfates , Sulfates/analysis , Air Pollutants/analysis , Gulf of Mexico , Oxidation-Reduction , Sulfur Oxides/analysis , Aerosols/analysis , Particulate Matter/analysis , Environmental Monitoring , China
18.
Clin Infect Dis ; 76(3): e526-e529, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35737946

ABSTRACT

We enrolled 7 individuals with recurrent symptoms or antigen test conversion following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected after rebound for a median of 17 days after initial diagnosis. Three had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.


Subject(s)
COVID-19 , Humans , COVID-19 Drug Treatment , Ritonavir/therapeutic use , Mutation
19.
Drug Deliv Transl Res ; 13(1): 308-319, 2023 01.
Article in English | MEDLINE | ID: mdl-35851672

ABSTRACT

In the design of injectable antimicrobial dextran-alginate hydrogels, the impact of dextran oxidation and its subsequent changes in molecular weight and the incorporation of glycol chitosan on (i) gel mechanical strength and (ii) the inhibitory profile of an encapsulated bacteriocin, nisin A, are explored. As the degree of oxidation increases, the weight average molecular mass of the dextran decreases, resulting in a reduction in elastic modulus of the gels made. Upon encapsulation of the bacteriocin nisin into the gels, varying the dextran mass/oxidation level allowed the antimicrobial activity against S. aureus to be controlled. Gels made with a higher molecular weight (less oxidised) dextran show a higher initial degree of inhibition while those made with a lower molecular weight (more oxidised) dextran exhibit a more sustained inhibition. Incorporating glycol chitosan into gels composed of dextran with higher masses significantly increased their storage modulus and the gels' initial degree of inhibition.


Subject(s)
Anti-Infective Agents , Bacteriocins , Hydrogels , Dextrans , Staphylococcus aureus
20.
Health Econ ; 32(1): 47-64, 2023 01.
Article in English | MEDLINE | ID: mdl-36180999

ABSTRACT

Sugar-sweetened beverage taxes have become an increasingly popular policy to combat the worldwide obesity epidemic, but relatively little is known about their impact on health outcomes, particularly among high school aged students. In this paper, I use public-use data from the Youth Risk Behavioral Surveillance System to determine whether high school students living in three of the American cities which have implemented Sugar-sweetened beverage taxes have experienced public health improvements. Using an event-study design that compares outcomes in treated districts to a group of similar control districts, I find reductions in soda consumption in Philadelphia and average body mass index in Philadelphia, San Francisco and Oakland, with suggestive evidence that the improvements are concentrated among female and non-white respondents in both cases.


Subject(s)
Sugar-Sweetened Beverages , Adolescent , Female , Humans , Child , Public Health , Beverages , Taxes , Obesity/epidemiology , Obesity/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...